10 research outputs found

    THIESEL 2020.Thermo-and Fluid Dynamic Processes in Direct Injection Engines.8th-11th September

    Full text link
    'The THIESEL 2020 Conference on Thermo-and Fluid Dynamic Processes in Direct Injection Engines planned in Valencia (Spain) for 8th to 11th September 2020 has been successfully held in a virtual format, due to the COVID19 pandemic. In spite of the very tough environmental demands, combustion engines will probably remain the main propulsion system in transport for the next 20 to 50 years, at least for as long as alternative solutions cannot provide the flexibility expected by customers of the 21st century. But it needs to adapt to the new times, and so research in combustion engines is nowadays mostly focused on the new challenges posed by hybridization and downsizing. The topics presented in the papers of the conference include traditional ones, such as Injection & Sprays, Combustion, but also Alternative Fuels, as well as papers dedicated specifically to CO2 Reduction and Emissions Abatement.Papers stem from the Academic Research sector as well as from the IndustryXandra Marcelle, M.; Desantes Fernández, JM. (2020). THIESEL 2020.Thermo-and Fluid Dynamic Processes in Direct Injection Engines.8th-11th September. Editorial Universitat Politècnica de València. http://hdl.handle.net/10251/150759EDITORIA

    THIESEL 2022. Conference on Thermo-and Fluid Dynamics of Clean Propulsion Powerplants

    Full text link
    The THIESEL 2022. Conference on Thermo-and Fluid Dynamic Processes in Direct Injection Engines planned in Valencia (Spain) for 8th to 11th September 2020 has been successfully held in a virtual format, due to the COVID19 pandemic. In spite of the very tough environmental demands, combustion engines will probably remain the main propulsion system in transport for the next 20 to 50 years, at least for as long as alternative solutions cannot provide the flexibility expected by customers of the 21st century. But it needs to adapt to the new times, and so research in combustion engines is nowadays mostly focused on the new challenges posed by hybridization and downsizing. The topics presented in the papers of the conference include traditional ones, such as Injection & Sprays, Combustion, but also Alternative Fuels, as well as papers dedicated specifically to CO2 Reduction and Emissions Abatement.Papers stem from the Academic Research sector as well as from the IndustryXandra Marcelle, M.; Payri Marín, R.; Serrano Cruz, JR. (2022). THIESEL 2022. Conference on Thermo-and Fluid Dynamics of Clean Propulsion Powerplants. Editorial Universitat Politècnica de València. https://doi.org/10.4995/Thiesel.2022.632801EDITORIA

    A one-dimensional modeling study on the effect of advanced insulation coatings on internal combustiĂłn engine efficiency

    Full text link
    This is the author's version of a work that was accepted for publication in International Journal of Engine Research. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published as https://doi.org/10.1177/1468087420921584.[EN] This article presents a study of the impact on engine efficiency of the heat loss reduction due to in-cylinder coating insulation. A numerical methodology based on one-dimensional heat transfer model is developed. Since there is no analytic solution for engines, the one-dimensional model was validated with the results of a simple "equivalent" problem, and then applied to different engine boundary conditions. Later on, the analysis of the effect of different coating properties on the heat transfer using the simplified one-dimensional heat transfer model is performed. After that, the model is coupled with a complete virtual engine that includes both thermodynamic and thermal modeling. Next, the thermal flows across the cylinder parts coated with the insulation material (piston and cylinder head) are predicted and the effect of the coating on engine indicated efficiency is analyzed in detail. The results show the gain limits, in terms of engine efficiency, that may be obtained with advanced coating solutions.The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: The equipment used in this work has been partially supported by FEDER project funds "otacion de infraestructuras cientifico tecnicas para el Centro Integral de Mejora Energetica y Medioambiental de Sistemas de Transporte (CiMeT)'' (Grant No. FEDER-ICTS-2012-06), framed in the operational program of unique scientific and technical infrastructure of the Spanish Government. This project has received funding from the European Union's Horizon 2020 research and innovation program under Grant Agreement No. 724084.Broatch, A.; Olmeda, P.; Margot, XM.; Gómez-Soriano, J. (2021). A one-dimensional modeling study on the effect of advanced insulation coatings on internal combustión engine efficiency. International Journal of Engine Research. 22(7):2390-2404. https://doi.org/10.1177/1468087420921584S23902404227Benajes, J., Novella, R., De Lima, D., & Tribotte, P. (2015). Investigation on Multiple Injection Strategies for Gasoline PPC Operation in a Newly Designed 2-Stroke HSDI Compression Ignition Engine. SAE International Journal of Engines, 8(2), 758-774. doi:10.4271/2015-01-0830Torregrosa, A. J., Broatch, A., Novella, R., Gomez-Soriano, J., & Mónico, L. F. (2017). Impact of gasoline and Diesel blends on combustion noise and pollutant emissions in Premixed Charge Compression Ignition engines. Energy, 137, 58-68. doi:10.1016/j.energy.2017.07.010Al-Muhsen, N. F. O., Huang, Y., & Hong, G. (2019). Effects of direct injection timing associated with spark timing on a small spark ignition engine equipped with ethanol dual-injection. Fuel, 239, 852-861. doi:10.1016/j.fuel.2018.10.118Broatch, A., Olmeda, P., Margot, X., & Gomez-Soriano, J. (2019). Numerical simulations for evaluating the impact of advanced insulation coatings on H2 additivated gasoline lean combustion in a turbocharged spark-ignited engine. Applied Thermal Engineering, 148, 674-683. doi:10.1016/j.applthermaleng.2018.11.106Berni, F., Cicalese, G., & Fontanesi, S. (2017). A modified thermal wall function for the estimation of gas-to-wall heat fluxes in CFD in-cylinder simulations of high performance spark-ignition engines. Applied Thermal Engineering, 115, 1045-1062. doi:10.1016/j.applthermaleng.2017.01.055Zhang, L. (2018). Parallel simulation of engine in-cylinder processes with conjugate heat transfer modeling. Applied Thermal Engineering, 142, 232-240. doi:10.1016/j.applthermaleng.2018.06.084Poubeau, A., Vauvy, A., Duffour, F., Zaccardi, J.-M., Paola, G. de, & Abramczuk, M. (2018). Modeling investigation of thermal insulation approaches for low heat rejection Diesel engines using a conjugate heat transfer model. International Journal of Engine Research, 20(1), 92-104. doi:10.1177/1468087418818264Rakopoulos, C. D., Rakopoulos, D. C., Mavropoulos, G. C., & Giakoumis, E. G. (2004). Experimental and theoretical study of the short term response temperature transients in the cylinder walls of a diesel engine at various operating conditions. Applied Thermal Engineering, 24(5-6), 679-702. doi:10.1016/j.applthermaleng.2003.11.002Kawaguchi, A., Wakisaka, Y., Nishikawa, N., Kosaka, H., Yamashita, H., Yamashita, C., … Tomoda, T. (2019). Thermo-swing insulation to reduce heat loss from the combustion chamber wall of a diesel engine. International Journal of Engine Research, 20(7), 805-816. doi:10.1177/1468087419852013Powell, T., O’Donnell, R., Hoffman, M., Filipi, Z., Jordan, E. H., Kumar, R., & Killingsworth, N. J. (2019). Experimental investigation of the relationship between thermal barrier coating structured porosity and homogeneous charge compression ignition engine combustion. International Journal of Engine Research, 22(1), 88-108. doi:10.1177/1468087419843752Somhorst, J., Oevermann, M., Bovo, M., & Denbratt, I. (2019). Evaluation of thermal barrier coatings and surface roughness in a single-cylinder light-duty diesel engine. International Journal of Engine Research, 22(3), 890-910. doi:10.1177/1468087419875837Kosaka, H., Wakisaka, Y., Nomura, Y., Hotta, Y., Koike, M., Nakakita, K., & Kawaguchi, A. (2013). Concept of «Temperature Swing Heat Insulation» in Combustion Chamber Walls, and Appropriate Thermo-Physical Properties for Heat Insulation Coat. SAE International Journal of Engines, 6(1), 142-149. doi:10.4271/2013-01-0274Wakisaka, Y., Inayoshi, M., Fukui, K., Kosaka, H., Hotta, Y., Kawaguchi, A., & Takada, N. (2016). Reduction of Heat Loss and Improvement of Thermal Efficiency by Application of «Temperature Swing» Insulation to Direct-Injection Diesel Engines. SAE International Journal of Engines, 9(3), 1449-1459. doi:10.4271/2016-01-0661Rakopoulos, C. D., Mavropoulos, G. C., & Hountalas, D. T. (2000). Measurements and analysis of load and speed effects on the instantaneous wall heat fluxes in a direct injection air-cooled diesel engine. International Journal of Energy Research, 24(7), 587-604. doi:10.1002/1099-114x(20000610)24:73.0.co;2-fKikusato, A., Terahata, K., Jin, K., & Daisho, Y. (2014). A Numerical Simulation Study on Improving the Thermal Efficiency of a Spark Ignited Engine --- Part 2: Predicting Instantaneous Combustion Chamber Wall Temperatures, Heat Losses and Knock ---. SAE International Journal of Engines, 7(1), 87-95. doi:10.4271/2014-01-1066Broatch, A., Olmeda, P., Margot, X., & Escalona, J. (2019). New approach to study the heat transfer in internal combustion engines by 3D modelling. International Journal of Thermal Sciences, 138, 405-415. doi:10.1016/j.ijthermalsci.2019.01.006Torregrosa, A. J., Olmeda, P., Martín, J., & Romero, C. (2011). A Tool for Predicting the Thermal Performance of a Diesel Engine. Heat Transfer Engineering, 32(10), 891-904. doi:10.1080/01457632.2011.548639Andruskiewicz, P., Najt, P., Durrett, R., & Payri, R. (2017). Assessing the capability of conventional in-cylinder insulation materials in achieving temperature swing engine performance benefits. International Journal of Engine Research, 19(6), 599-612. doi:10.1177/1468087417729254Payri, F., Molina, S., Martín, J., & Armas, O. (2006). Influence of measurement errors and estimated parameters on combustion diagnosis. Applied Thermal Engineering, 26(2-3), 226-236. doi:10.1016/j.applthermaleng.2005.05.006Payri, F., Olmeda, P., Guardiola, C., & Martín, J. (2011). Adaptive determination of cut-off frequencies for filtering the in-cylinder pressure in diesel engines combustion analysis. Applied Thermal Engineering, 31(14-15), 2869-2876. doi:10.1016/j.applthermaleng.2011.05.012Payri, F., Olmeda, P., Martín, J., & García, A. (2011). A complete 0D thermodynamic predictive model for direct injection diesel engines. Applied Energy, 88(12), 4632-4641. doi:10.1016/j.apenergy.2011.06.005Olmeda, P., Martín, J., Arnau, F. J., & Artham, S. (2019). Analysis of the energy balance during World harmonized Light vehicles Test Cycle in warmed and cold conditions using a Virtual Engine. International Journal of Engine Research, 21(6), 1037-1054. doi:10.1177/146808741987859

    CFD Study of Needle Motion Influence on the Spray Conditions of Single-Hole Injectors

    Full text link
    [EN] The spray characteristics and, consequently, the success of the Diesel combustion process is strongly affected by the manner in which fuel is introduced in the combustion chamber. This work consists in studying the effect of needle motion of typical single-hole sac-type injectors on nozzle exit conditions. Three-dimensional moving mesh simulations have been carried out to calculate the injection process using cylindrical and conical nozzle geometries. The CFD analysis includes a study of the effect of cavitation on kinetic turbulent energy and velocity profiles. Results show that the flow within the nozzle and at the exit varies depending on the nozzle geometry and needle position. The model predicts clouds of cavitation that grow and exit the nozzle at low needle lifts. A kind of hysteresis in the development of the flow has also been observed between needle opening and closing. The existing correlation between turbulence and cavitation at the nozzle hole exit during the needle motion has been quantifiedThis research has been funded by the Spanish Government in the frame of the Project "Caracterizacion experimental de la cavitacion en el flujo interno e influencia sobre modelos de chorro Diesel," Reference TRA2007-68006-C02-01. S.H. and P.F. were partially supported by the Universidad Politecnica de Valencia under the program "Primeros Proyectos de investigacion," in the frame of the project "Simulacion CFD de chorros Diesel en inyeccion directa: la atomizacion primaria," Reference PAID-2759 and by the Generalitat Valenciana under Contract No. GV/2010/039.Margot, XM.; Hoyas Calvo, S.; Fajardo, P.; Patouna, S. (2011). CFD Study of Needle Motion Influence on the Spray Conditions of Single-Hole Injectors. Atomization and Sprays. 21(1):31-40. doi:10.1615/AtomizSpr.v21.i1.30S314021

    Conjugate heat transfer study of the impact of "thermo-swing" coatings on internal combustion engines heat losses

    Full text link
    [EN] To comply with the very strict emissions regulation the automotive industry is succeeding in developing ever more efficient engines, and there is scope for more improvements. In this regard, some investigations have suggested that insulating the combustion chamber walls of an internal combustion engine (ICE) yield low thermal losses. Most of the literature available on this topic presents simplified models that do not allow studying in detail the coating impact on engine efficiency. A more precise approach that consists in the combination of Computational Fluid Dynamics (CFD) and Conjugate Heat Transfer (CHT) simulations is used in this paper to predict the heat losses through the combustion chamber walls of a spark ignition (SI) engine. Two configurations are considered for the single cylinder engine: the metallic case and the same engine with coated piston and cylinder head. The insulation material has a low thermal conductivity (k 3.0.co;2-fDai, X. (Hunter), Singh, S., Krishnan, S. R., & Srinivasan, K. K. (2018). Numerical study of combustion characteristics and emissions of a diesel–methane dual-fuel engine for a wide range of injection timings. International Journal of Engine Research, 21(5), 781-793. doi:10.1177/1468087418783637Broatch, A., Olmeda, P., García, A., Salvador-Iborra, J., & Warey, A. (2017). Impact of swirl on in-cylinder heat transfer in a light-duty diesel engine. Energy, 119, 1010-1023. doi:10.1016/j.energy.2016.11.040Andruskiewicz, P., Najt, P., Durrett, R., Biesboer, S., Schaedler, T., & Payri, R. (2017). Analysis of the effects of wall temperature swing on reciprocating internal combustion engine processes. International Journal of Engine Research, 19(4), 461-473. doi:10.1177/1468087417717903Poubeau, A., Vauvy, A., Duffour, F., Zaccardi, J.-M., Paola, G. de, & Abramczuk, M. (2018). Modeling investigation of thermal insulation approaches for low heat rejection Diesel engines using a conjugate heat transfer model. International Journal of Engine Research, 20(1), 92-104. doi:10.1177/1468087418818264Broatch, A., Margot, X., Novella, R., & Gomez-Soriano, J. (2016). Combustion noise analysis of partially premixed combustion concept using gasoline fuel in a 2-stroke engine. Energy, 107, 612-624. doi:10.1016/j.energy.2016.04.045Broatch, A., Margot, X., Novella, R., & Gomez-Soriano, J. (2017). Impact of the injector design on the combustion noise of gasoline partially premixed combustion in a 2-stroke engine. Applied Thermal Engineering, 119, 530-540. doi:10.1016/j.applthermaleng.2017.03.081Yakhot, V., & Orszag, S. A. (1986). Renormalization group analysis of turbulence. I. Basic theory. Journal of Scientific Computing, 1(1), 3-51. doi:10.1007/bf01061452Redlich, O., & Kwong, J. N. S. (1949). On the Thermodynamics of Solutions. V. An Equation of State. Fugacities of Gaseous Solutions. Chemical Reviews, 44(1), 233-244. doi:10.1021/cr60137a013Issa, R. . (1986). Solution of the implicitly discretised fluid flow equations by operator-splitting. Journal of Computational Physics, 62(1), 40-65. doi:10.1016/0021-9991(86)90099-9Torregrosa, A., Olmeda, P., Degraeuwe, B., & Reyes, M. (2006). A concise wall temperature model for DI Diesel engines. Applied Thermal Engineering, 26(11-12), 1320-1327. doi:10.1016/j.applthermaleng.2005.10.021Torregrosa, A. J., Olmeda, P., Martín, J., & Romero, C. (2011). A Tool for Predicting the Thermal Performance of a Diesel Engine. Heat Transfer Engineering, 32(10), 891-904. doi:10.1080/01457632.2011.548639Lu, Y., Zhang, X., Xiang, P., & Dong, D. (2017). Analysis of thermal temperature fields and thermal stress under steady temperature field of diesel engine piston. Applied Thermal Engineering, 113, 796-812. doi:10.1016/j.applthermaleng.2016.11.07

    Local flow measurements in a turbocharger compressor inlet

    Full text link
    [EN] This paper describes an experimental study carried out with the objective of characterizing flow instabilities in turbocharger compressors, specially the distribution of the high-temperature compressed back flow that appears upstream of the impeller at marginal surge conditions. The inlet of a test compressor was fitted with linear and circumferential thermocouple arrays in order to measure the temperature distribution caused by this backflow, whose independence of duct wall temperature was validated through thermographic imaging. Miniaturized pressure probes at the inducer and diffuser showed how pressure spectra varied during the different operating conditions. In-duct acoustic intensity was measured in both the inlet and the outlet to investigate the correlation between a known super synchronous broadband issue known as whoosh noise and the backflow behaviour as characterized by local pressure and temperature. Analysis of the results points to inlet whoosh noise being boosted by this reversed flow but not caused by it, the source probably being located at or downstream of the compressor impeller.This work has been partially supported by Jaguar Land Rover Limited, Abbey Road, Whitley, Coventry CV3 4LF, UK. The equipment used in this work has been partially supported by the Spanish Ministerio de Economía y Competitividad through the grant no DPI2015-70464-R and by FEDER project funds “Dotaciön de infraestructuras científico técnicas para el Centro Integral de Mejora Energética y Medioambiental de Sistemas de Transporte (CiMeT), (FEDER-ICTS-2012-06)” framed in the operational program of unique scientific and technical infrastructure of the Spanish Ministerio de Economía y Competitividad. J. García-Tíscar is partially supported through contract FPI-S2-2015-1530 of the Programa de Apoyo para la Investigación y Desarrollo (PAID) of Universitat Politécnica de Valéncia.Torregrosa, AJ.; Broatch, A.; Margot, XM.; García Tíscar, J.; Narvekar, Y.; Cheung, R. (2017). Local flow measurements in a turbocharger compressor inlet. Experimental Thermal and Fluid Science. 88:542-553. https://doi.org/10.1016/j.expthermflusci.2017.07.007S5425538

    Ilass Europe. 28th european conference on liquid atomization and spray systems

    Full text link
    ILASS 2017 is the 28th European Conference on Liquid Atomization and Spray Systems.Following the successful 26th ILASS 2014 (Bremen) and 27th ILASS 2016 conferences,we will continue this tradition by providing a venue for industrial and academic researchers and students to engage in the scientific development and practice of Atomization and Spray Systems and to meet and share recent developments in these fields. ILASS is the Institute for liquid atomization and spray systems. ILASS Europe has its roots in an initiative of the late Paul Eisenklam,who established the institute in 1982Payri Marín, R.; Xandra Marcelle, M. (2017). Ilass Europe. 28th european conference on liquid atomization and spray systems. Editorial Universitat Politècnica de València. http://hdl.handle.net/10251/86907EDITORIA

    Thiesel 2014 (Thermo-and fluid dynamic processes in direct injection engines)

    Full text link
    Thiesel is presented as a valuable platform for exchange of the latest international work and disseminates the results of research to improve engine efficiency and reduce emissions. It provides an ideal opportunity to share theories and methods that provide solutions that respect the environment, and generate great excitement and interest in the automotive industry with the latest discoveries and technologies.Angelberger, C.; Desantes Fernández, JM.; Arcoumanis, C.; Payri González, F.; Margot, XM. (2014). Thiesel 2014 (Thermo-and fluid dynamic processes in direct injection engines). Editorial Universitat Politècnica de València. http://hdl.handle.net/10251/44213Archivo delegad

    Evaluation of the Eulerian Lagrangian Spray Atomization (ELSA) model in spray simulations: 2D cases

    Full text link
    [EN] The aim of this paper is the evaluation and validation of the Eulerian-Lagrangian Spray Atomization (ELSA) model implemented in a CFD code by Renault. ELSA is an integrated model for capturing the whole spray evolution, in particular including primary break-up and secondary atomization. Two-dimensional simulations have been performed during the study, which is in fact enough to capture some of the main features of the spray, such as the spray penetration and the axial velocity. A mesh independence study has also been carried out in order to characterize the lowest mesh size that can be used to correctly characterize the spray. Furthermore, the two-equation k-epsilon turbulence model has been adjusted by changing some of the parameters of the dissipation rate transport equation in order to accurately characterize the spray. Finally some analyses of the results obtained, in terms of penetration, liquid mass fraction and droplet number and size, are presented in the last section of the paper. (C) 2011 Elsevier Ltd. All rights reserved.This work was supported by Renault and VECOM (Vehicle Concept Modeling) EU FP7, under the Marie Curie Initial Training Network (ITN) Grant Agreement 213543. The authors also acknowledge the support of the Generalitat Valenciana, under the contract GV/2010/039.Hoyas, S.; Gil MegĂ­as, A.; Margot, XM.; Khuong-Anh, D.; Ravet, F. (2013). Evaluation of the Eulerian Lagrangian Spray Atomization (ELSA) model in spray simulations: 2D cases. Mathematical and Computer Modelling. 57(7-8):1686-1693. https://doi.org/10.1016/j.mcm.2011.11.006S16861693577-
    corecore